Муниципальное бюджетное общеобразовательное учреждение городского округа Тольятти «Лицей № 6 имени Героя Советского Союза Александра Матвеевича Матросова»

ПРИНЯТА

Педагогическим советом МБУ «Лицей №6»

Протокол № 1 от 28. 08. 2020 г.

УТВЕРЖДЕНА

Приказом по МБУ «Лицей №6»

№216-о́л от «28» 08. 2020 г.

МДиректор ИБУ «Лицей №6»

No 6»

Е. Ю. Мицук

РАБОЧАЯ ПРОГРАММА
ПРЕДМЕТ «ФИЗИКА»
(углубленный уровень)
10-11 классы

Составитель: Каминскае З.И.

ТОЛЬЯТТИ 2019 Рабочая программа по предмету «Физика» для 10 — 11 классов (углубленный уровень) составлена на основе:

- 1. Федерального государственного образовательного стандарта среднего общего образования, утвержденного приказом от 17.05.2012 г. № 413 (ред. от 29.06.2017 г.).
- 2. Примерной основной образовательной программы ФГОС СОО (одобренной решением Федерального учебно-методического объединения по общему образованию, протокол от 12 мая 2016 г. № 2/16)
 - 3. ООП СОО МБУ «Лицей №6» г. о. Тольятти
- 4. Федерального перечня учебников, рекомендованных к использованию при реализации имеющих государственную аккредитацию образовательных программ начального, общего, основного общего, среднего общего образования», утвержденного приказом Министерства образования и науки Российской Федерации от 28.12.2018 г. № 345.
 - 5. Физика. Рабочие программы. Предметная линия учебников серии

«Классический курс». 10—11 классы : учеб. пособие для общеобразоват. организаций / А. В. Шаталина. - М. : Просвещение, 2017. - 81 с. - ISBN 978-5-09-048587-6.

Планируемые результаты освоения учебного предмета «Физика»

в 10-11 классах (углубленный уровень)

Выпускник на углубленном уровне научится:

объяснять и анализировать роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;

- характеризовать взаимосвязь между физикой и другими естественными науками;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- самостоятельно конструировать экспериментальные установки для проверки выдвинутых гипотез, рассчитывать абсолютную и относительную погрешности;
 - самостоятельно планировать и проводить физические эксперименты;

- решать практико-ориентированные качественные и расчетные физические задачи с опорой как на известные физические законы, закономерности и модели, так и на тексты с избыточной информацией;
- объяснять границы применения изученных физических моделей при решении физических и межпредметных задач;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, и роль физики в решении этих проблем;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

Выпускник на углубленном уровне получит возможность научиться:

- проверять экспериментальными средствами выдвинутые гипотезы, формулируя цель исследования, на основе знания основополагающих физических закономерностей и законов;
- описывать и анализировать полученную в результате проведенных физических экспериментов информацию, определять ее достоверность;
- понимать и объяснять системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- решать экспериментальные, качественные и количественные задачи олимпиадного уровня сложности, используя физические законы, а также уравнения, связывающие физические величины;
- анализировать границы применимости физических законов, понимать всеобщий характер фундаментальных законов и ограниченность использования частных законов;
- формулировать и решать новые задачи, возникающие в ходе учебноисследовательской и проектной деятельности;
- усовершенствовать приборы и методы исследования в соответствии с поставленной задачей;
- использовать методы математического моделирования, в том числе простейшие статистические методы для обработки результатов эксперимента.

Содержание учебного предмета «Физика» в 10-11 классах (углубленный уровень)

Примерная программа учебного предмета «Физика» направлена на формирование у обучающихся функциональной грамотности и метапредметных умений через выполнение исследовательской и практической деятельности.

В системе естественно-научного образования физика как учебный предмет занимает важное место в формировании научного мировоззрения и ознакомления, обучающихся с методами научного познания окружающего мира, а также с физическими основами современного производства и бытового технического окружения человека; в формировании собственной позиции по отношению к физической информации, полученной из разных источников.

Успешность изучения предмета связана с овладением основами учебноисследовательской деятельности, применением полученных знаний при решении практических и теоретических задач.

В соответствии с ФГОС СОО образования физика может изучаться на базовом и углубленном уровнях.

Изучение физики **на углубленном уровне** включает расширение предметных результатов и содержание, ориентированное на подготовку к последующему профессиональному образованию. Изучение предмета на углубленном уровне позволяет сформировать у обучающихся физическое мышление, умение систематизировать и обобщать полученные знания, самостоятельно применять полученные знания для решения практических и учебно-исследовательских задач; умение анализировать, прогнозировать и оценивать с позиции экологической безопасности последствия бытовой и производственной деятельности человека, связанной с использованием источников энергии.

В основу изучения предмета «Физика» на углубленном уровне в части формирования у обучающихся научного мировоззрения, освоения общенаучных методов познания, а также практического применения научных знаний заложены межпредметные связи в области естественных, математических и гуманитарных наук.

Примерная программа составлена на основе модульного принципа построения учебного материала. Количество часов на изучение учебного предмета и классы, в которых предмет может изучаться, относятся к компетенции образовательной организации. Примерная программа содержит примерный перечень практических и лабораторных работ. При составлении рабочей программы учитель вправе выбрать из перечня работы, которые считает наиболее целесообразными для достижения предметных результатов.

Содержание программы «Физика» в 10-11 классах (углубленный уровень)

Физика и естественнонаучный метод познания природы

Физика - фундаментальная наука о природе. Научный метод познания мира. Взаимосвязь между физикой и другими естественными науками. Методы научного исследования физических явлений. Физические величины. Погрешности измерений физических величин. Моделирование явлений и процессов природы. Закономерность и случайность. Физические законы и границы их применимости. Физические теории и принцип соответствия. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей. Физика и культура.

Механика

Предмет и задачи классической механики. Кинематические характеристики механического движения. Модели тел и движений. Пространство и время. Относительность механического движения. Системы отсчёта. Скалярные и векторные физические величины. Траектория. Путь. Перемещение. Скорость. Ускорение. Равномерное и равноускоренное прямолинейное движение. Свободное падение тела. Равномерное движение точки по окружности. Поступательное и вращательное движение твёрдого тела.

Взаимодействие тел. Явление инерции. Сила. Масса. Инерциальные системы отсчета. Законы динамики Ньютона. Сила тяжести, вес, невесомость. Силы упругости, силы трения. Законы: всемирного тяготения, Гука, сухого трения. Использование законов механики для объяснения движения небесных тел и для развития космических исследований. Явления, наблюдаемые в неинерциальных системах отсчёта.

Импульс материальной точки и системы тел. Закон изменения и сохранения импульса. Работа силы. Механическая энергия материальной точки и системы. Закон изменения и сохранения механической энергии.

Динамика вращательного движения абсолютно твёрдого тела.

Равновесие материальной точки и твёрдого тела. Момент силы. Условия равновесия твёрдого тела в инерциальной системе отсчёта. Равновесие жидкости и газа. Давление. Движение жидкостей и газов. Закон сохранения энергии в динамике жидкости.

Молекулярная физика и термодинамика

Основы молекулярно-кинетической теории (МКТ) и термодинамики.

Экспериментальные доказательства МКТ. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества.

Модель идеального газа. Давление газа. Связь между давлением и средней

кинетической энергией поступательного теплового движения молекул идеального газа. Модель идеального газа в термодинамике: уравнение Менделеева—Клапейрона, выражение для внутренней энергии. Закон Дальтона. Газовые законы.

Агрегатные состояния вещества. Фазовые переходы. Преобразование энергии в фазовых переходах. Насыщенные и ненасыщенные пары. Влажность воздуха. Модель строения жидкостей. Поверхностное натяжение. Смачивание и несмачивание. Капилляры. Модель строения твёрдых тел. Механические свойства твёрдых тел. Кристаллические и аморфные тела.

Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Первый закон термодинамики. Адиабатный процесс. Необратимость тепловых процессов. *Второй закон термодинамики*. Преобразования энергии в тепловых машинах. Цикл Карно. КПД тепловой машины. Экологические проблемы теплоэнергетики.

Основы электродинамики

Предмет и задачи электродинамики. Электрическое взаимодействие. Закон сохранения электрического заряда. Закон Кулона. Напряжённость и потенциал электростатического поля. Принцип суперпозиции электрических полей. Разность потенциалов. Проводники и диэлектрики в электростатическом поле. Электрическая ёмкость. Конденсатор. Энергия электрического поля.

Постоянный электрический ток. Сила тока. Электродвижущая сила (ЭДС). Закон Ома для полной электрической цепи. Электрический ток в металлах, электролитах, полупроводниках, газах и вакууме. Плазма. Электролиз. Полупроводниковые приборы. Сверхпроводимость.

Магнитное поле. Вектор магнитной индукции. Принцип суперпозиции магнитных полей. Магнитное поле проводника с током. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца.

Поток вектора магнитной индукции. Явление электромагнитной индукции. Правило Ленца. Закон электромагнитной индукции. ЭДС индукции в движущихся проводниках. Явление самоиндукции. Индуктивность. Энергия электромагнитного поля. Магнитные свойства вещества.

Колебания и волны

Механические колебания. Амплитуда, период, частота, фаза колебаний. Превращения энергии при колебаниях. *Вынужденные колебания, резонанс*.

Электромагнитные колебания. Колебательный контур. Свободные электромагнитные колебания. Вынужденные электромагнитные колебания. Резонанс. Переменный ток. Конденсатор и катушка в цепи переменного тока. Элементарная теория трансформатора. Производство, передача и потребление электрической энергии.

Механические волны. Поперечные и продольные волны. Энергия волны.

Интерференция и дифракция волн. Звуковые волны.

Электромагнитное поле. Вихревое электрическое поле.

Электромагнитные волны. Свойства электромагнитных волн. Диапазоны электромагнитных излучений и их практическое применение. Принципы радиосвязи и телевидения. Развитие средств связи.

Оптика

Геометрическая оптика. Прямолинейное распространение света в однородной среде. Законы отражения и преломления света. Полное отражение света. Формула тонкой линзы. Оптические приборы.

Скорость света. Волновые свойства света. Дисперсия света. Интерференция света. Когерентность. Дифракция света. Поляризация света.

Виды излучений. Спектры и спектральный анализ. Практическое применение электромагнитных излучений.

Основы специальной теории относительности

Инвариантность модуля скорости света в вакууме. Принцип относительности Эйнштейна. *Пространство и время в специальной теории относительности*. Энергия и *импульс свободной частицы*. Связь массы и энергии свободной частицы. Энергия покоя.

Квантовая физика. Физика атома и атомного ядра

Предмет и задачи квантовой физики.

Тепловое излучение. Распределение энергии в спектре абсолютно чёрного тела. Гипотеза М. Планка о квантах. Фотоэффект. Опыты А. Г. Столетова, законы фотоэффекта. Уравнение А. Эйнштейна для фотоэффекта.

Фотон. Гипотеза де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм. Соотношение неопределённостей Гейзенберга. Модели строения атома. Опыты Резерфорда. Планетарная модель строения атома. Объяснение линейчатого спектра водорода на основе квантовых постулатов Бора. Спонтанное и вынужденное излучение света.

Состав и строение атомных ядер. Изотопы. Ядерные силы. Дефект массы. Энергия связи атомных ядер.

Радиоактивность. Виды радиоактивного излучения. Закон радиоактивного распада. Ядерные реакции, реакции деления и синтеза. Цепная реакция деления ядер. Ядерная энергетика. Термоядерный синтез. Применение ядерной энергии. *Биологическое действие радиоактивных излучений*.

Элементарные частицы. Фундаментальные взаимодействия. Ускорители элементарных частиц.

Строение Вселенной

Применимость законов физики для объяснения природы космических объектов. Солнечная система. Звёзды и источники их энергии. Классификация звёзд. Эволюция Солнца и звёзд.

Галактика. Другие галактики. Пространственно-временные масштабы наблюдаемой Вселенной. Представление об эволюции Вселенной. *Тёмная*

материя и тёмная энергия.

Примерный перечень практических и лабораторных работ

Прямые измерения:

- измерение мгновенной скорости с использованием секундомера или компьютера с датчиками;
 - сравнение масс (по взаимодействию);
 - измерение сил в механике;
 - измерение температуры жидкостными и цифровыми термометрами;
 - оценка сил взаимодействия молекул (методом отрыва капель);
- экспериментальная проверка закона Гей–Люссака (измерение термодинамических параметров газа;
 - измерение ЭДС источника тока;
 - определение периода обращения двойных звёзд (печатные материалы).

Косвенные измерения:

- измерение ускорения;
- измерение ускорения свободного падения;
- определение энергии и импульса по тормозному пути;
- измерение удельной теплоты плавления льда;
- измерение напряжённости вихревого электрического поля (при наблюдении электромагнитной индукции);
 - измерение внутреннего сопротивления источника тока;
 - определение показателя преломления среды;
 - измерение фокусного расстояния собирающей и рассеивающей линз;
 - определение длины световой волны;
 - оценка информационной ёмкости компакт-диска (CD);
- определение импульса и энергии частицы при движении в магнитном поле (по фотографиям).

Наблюдения:

- наблюдение механических явлений в инерциальных и неинерциальных системах отсчёта;

- наблюдение вынужденных колебаний и резонанса;
- наблюдение диффузии;
- наблюдение явления электромагнитной индукции;
- наблюдение волновых свойств света: дифракция, интерференция, поляризации;
 - наблюдение спектров;
 - вечерние наблюдения звёзд, Луны и планет в телескоп или бинокль.

Исследования:

- исследование равноускоренного движения с использованием электронного секундомера или компьютера с датчиками;
 - исследование движения тела, брошенного горизонтально;
 - исследование центрального удара;
 - исследование качения цилиндра по наклонной плоскости;
 - исследование движения броуновской частицы (по трекам Перрена);
 - исследование изопроцессов;
 - исследование изохорного процесса и оценка абсолютного нуля;
 - исследование остывания воды;
- исследование зависимости напряжения на полюсах источника тока от силы тока в цепи;
 - исследование зависимости силы тока через лампочку от напряжения на ней;
 - исследование нагревания воды нагревателем небольшой мощности;
 - исследование явления электромагнитной индукции;
 - исследование зависимости угла преломления от угла падения;
- исследование зависимости расстояния линзы до изображения от расстояния линзы до предмета;
 - исследование спектра водорода;
 - исследование движения двойных звёзд (по печатным материалам).

Проверка гипотез:

- при движении бруска по наклонной плоскости время перемещения на определённое расстояния тем больше, чем больше масса бруска;
- при движении бруска по наклонной плоскости скорость прямо пропорциональна пути;
 - при затухании колебаний амплитуда обратно пропорциональна времени;
- квадрат среднего перемещение броуновской частицы прямо пропорционально времени наблюдения (по трекам Перрена);
 - скорость остывания воды линейно зависит от времени остывания;
 - напряжение при последовательном включении лампочки и резистора не равно

сумме напряжений на лампочке и резисторе;

- угол преломления прямо пропорционален углу падения;
- при плотном сложении двух линз оптические силы складываются;

Конструирование технических устройств:

- конструирование наклонной плоскости с заданным КПД;
- конструирование рычажных весов;
- конструирование наклонной плоскости, по которой брусок движется с заданным ускорением;
 - конструирование электродвигателя;
 - конструирование трансформатора;
 - конструирование модели телескопа или микроскопа.

Лабораторный практикум

- 1. Измерение ускорения свободного падения с помощью математического маятника.
 - 2. Изучение второго закона Ньютона.
 - 3. Исследование модели движения тела, брошенного под углом к горизонту.
 - 4. Изучение закона сохранения импульса при соударении стальных шаров.
 - 5. Изучение закона сохранения механической энергии.
 - 6. Измерение КПД электродвигателя при поднятии груза.
 - 7. Изучение автоколебаний.
 - 8. Изучение поперечных волн в струне с закрепленными концами.
 - 9. Изучение свойств звуковых волн.
 - 10. Опытная проверка закона Гей-Люссака.
 - 11. Определение процентного содержания влаги в мокром снеге.
- 12. Изучение распределения молекул идеального газа по скоростям (компьютерное моделирование).
- 13. Изучение идеальной тепловой машины Карно (компьютерное моделирование).
 - 14. Изучение теплового взаимодействия (компьютерное моделирование).
 - 15. Измерение модуля Юнга резины.
- 16. Измерение температурного коэффициента линейного расширения твердых тел.
 - 17. Определение коэффициента поверхностного натяжения жидкости.
 - 18. Измерение емкости конденсатора.
 - 19. Измерение удельного сопротивления проводника.
 - 20. Измерение ЭДС и внутреннего сопротивления источника тока.
 - 21. Изучение цепи постоянного тока, содержащей ЭДС.

- 22. Сборка и градуировка омметра.
- 23. Расширение предела измерения вольтметра/амперметра-.
- 24. Изучение температурной зависимости сопротивления металлов и полупроводников.
- 25. Изучение процесса прохождения электрического тока в растворах электролитов.
 - 26. Изучение полупроводникового диода.
 - 27. Изучение процессов выпрямления переменного тока.
 - 28. Изучение процесса прохождения тока в биполярном транзисторе.
 - 29. Изучение цепи переменного тока.
 - 30. Изучение резонанса в цепи переменного тока.
 - 31. Измерение коэффициента мощности цепи переменного тока.
 - 32. Изучение однофазного трансформатора.
 - 33. Измерение емкости конденсатора и индуктивности катушки.
- 3.4. Ознакомление с процессами модуляции и демодуляции (детектирования) электромагнитных колебаний.
 - 3.5. Изучение закона преломления света.
 - 3.6. Измерение показателя преломления стекла при помощи микроскопа.
 - 3.7. Измерение фокусного расстояния рассеивающей линзы.
 - 3.8. Сборка оптических систем.
 - 3.9. Исследование интерференции света.
 - 40. Исследование дифракции света.
 - 4.1. Определение длины световой волны при помощи дифракционной решетки.
 - 42. Изучение явлений фотоэффекта. Измерение работы выхода электрона.

Тематическое планирование учебного предмета «Физика» в 10-11 классах (углубленный уровень)

10 класс

№ п/п	Раздел	Количество			
		часов			
I	Зарождение и развитие научного взгляда на мир	3			
<u>II</u>	Механика (58ч.)				
1.	Кинематика. Кинематика точки и твердого тела	21			
2.	Динамика. Законы механики Ньютона.	6			
3.	Динамика. Силы в механике. Гравитационные силы	3			
4.	Силы упругости	4			
5.	Силы трения	4			
6.	Законы сохранения	8			
7.		2			
	Динамика вращательно движения абсолютно твердого тела				
8.	Статика	8			
9.	Гидромеханика	2			
10	Лабораторный практикум	8			
<u>III</u>	Молекулярная физика. Термодинамика. (34ч.)				
1.	Основы молекулярно-кинетической теории	4			
2.	Молекулярно-кинетическая теория идеального газа	5			
3.	Уравнение состояния идеального газа. Газовые законы	6			
4.	Взаимные превращения жидкостей и газов	3			
5.	Жидкие и твердые тела	6			
6.	Основы термодинамики	10			
7.	Лабораторный практикум	6			
<u>IV</u>	Электродинамика (44ч.)				
1.	Электростатика	16			
2.	Законы постоянного тока	14			
3.	Электрический ток в различных средах	8			
4.	Лабораторный практикум	10			
5.	Резервное время	17			
Всего		170ч.			

11 класс

№ п/п	Раздел	Количество
		часов
Ι	Физика как наука. Методы научного познания природы.	1
II	<u>Электродинамика</u>	<u>19</u>
1	Магнитное поле	8
2	Электромагнитная индукция	11
III	Колебания и волны	<u>37</u>
1	Механические колебания	7

2	Электромагнитные колебания	15	
3	Механические волны	6	
4	Электромагнитные волны	9	
IV	Оптика	<u>27</u>	
1	Световые волны	22	
2	Излучение и спектры	5	
\mathbf{V}	Теория относительности	4	
VI	<u>Квантовая физика</u>	<u>36</u>	
1	Световые кванты	8	
2	Атомная физика	7	
3	Физика атомного ядра	18	
4	Элементарные частицы	3	
VII	Строение вселенной	9	
VIII	Физический практикум	<u>16</u>	
IX	Повторение курса физики 11 класс	9	
X	Повторение курса физики 10 класс	9	
X1	Значение физики для объяснения мира и развития	3	
	производительных сил		
Всего		170ч.	